· Водород

Водород

09.12.2024

Водоро́д (химический символ — H, от лат. hydrogenium) — химический элемент первого периода периодической таблицы химических элементов Д. И. Менделеева, с атомным номером 1.
Одноатомная форма водорода — самое распространённое химическое вещество во Вселенной, составляющее примерно 75 % всей барионной массы. Звёзды, кроме компактных, в основном состоят из водородной плазмы. Самый лёгкий из элементов периодической таблицы.
Три изотопа водорода имеют собственные названия: 1H — протий, 2H — дейтерий и 3H — тритий (радиоактивен). Ядро самого распространённого изотопа — протия — состоит из одного только протона и не содержит нейтронов.
При стандартной температуре и давлении водород — бесцветный, не имеющий запаха и вкуса, нетоксичный двухатомный газ (химическая формула — H2), который в смеси с воздухом или кислородом горюч и крайне пожаро- и взрывоопасен. В присутствии других окисляющих газов, например фтора или хлора, водород также взрывоопасен. Поскольку водород охотно формирует ковалентные связи с большинством неметаллов, большая часть водорода на Земле существует в молекулярных соединениях, таких как вода или органические вещества. Водород играет особенно важную роль в кислотно-основных реакциях.
Растворим в этаноле и ряде металлов: железе, никеле, палладии, титане, платине, ниобии.
История открытия
Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Впервые водород получил Парацельс, погружая железные опилки в серную кислоту в XVI веке.
В 1671 году Роберт Бойль подробно описал реакцию между железными опилками и разбавленными кислотами, при которой выделяется газообразный водород.
В 1745 году Михаил Ломоносов изучил реакции растворения металлов кислотами и выдвинул предположение, что выделяющийся в этом процессе «горючий пар» (фактически — водород) является гипотетической субстанцией флогистон.
В 1766 году Генри Кавендиш, независимо от Ломоносова, пришёл к заключению, что «горючий воздух», образующийся при реакции металлов с кислотами, представляет собой флогистон, и в 1781 году обнаружил, что при сгорании этого газа образуется вода.
Французский химик Антуан Лавуазье совместно с инженером Жаном Мёнье, используя специальные газометры, в 1783 году осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Так он установил, что «горючий воздух» входит в состав воды и может быть из неё получен.
Происхождение названия
Лавуазье дал водороду название hydrogène (от др.-греч. ὕδωρ — вода и γεννάω — рождаю) — «рождающий воду». В 1801 году последователь Лавуазье, академик Василий Севергин, называл его «водотворное вещество», он писал:
Водотворное вещество в соединении с кислотворным составляет воду. Сие можно доказать, как через разрешение, так и через составление.
Русское наименование «водород» предложил химик Михаил Соловьёв в 1824 году, что являлось переводом латинского hydrogene.
РаспространённостьВо Вселенной
В настоящее время водород является самым распространённым элементом во Вселенной. На его долю приходится около 88,6 % всех атомов (около 11,3 % составляют атомы гелия, доля всех остальных вместе взятых элементов — порядка 0,1 %). Таким образом, водород — основная составная часть звёзд и межзвёздного газа. Повсеместное возникновение атомарного водорода впервые произошло в эпоху рекомбинации.
В условиях звёздных температур (например, температура поверхности Солнца ~6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.
На планете Земля
Массовая доля водорода в земной коре составляет 1 % — это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна ~52 %). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках, где по числу атомов на водород приходится почти 63 %.
В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005 % по объёму для сухого воздуха).
Под воздействием солнечного ветра Земля ежесекундно теряет (в окружающий космос) три килограмма водорода, что в далёкой перспективе приведёт к иссушению нашей планеты.
Получение
В промышленности
На 2019 год в мире потребляется 75 млн тонн водорода, в основном в нефтепереработке и производстве аммиака. Из них более 3/4 производится из природного газа, для чего расходуется более 205 млрд м³ газа[19]. Почти все остальное получают из угля. Около 0,1 % (~100 тыс. тонн) вырабатывается электролизом. При производстве водорода в атмосферу поступает ~830 млн тонн CO2. Себестоимость водорода, полученного из природного газа, оценивается в 1,5—3 доллара за 1 кг.
  • Конверсия метана с водяным паром при 1000 °C:
  • CH 4 + H 2 O ↽ − − ⇀ CO + 3 H 2 {\displaystyle {\ce {CH4 + H2O <=> CO + 3H2}}}
  • Пропускание паров воды над раскалённым коксом при температуре около 1000 °C:
  • C + H 2 O ↽ − − ⇀ CO ↑ + H 2 ↑ {\displaystyle {\ce {C + H2O <=> CO ^ + H2 ^}}} CO + H 2 O ↽ − − ⇀ CO 2 ↑ + H 2 ↑ {\displaystyle {\ce {CO + H2O <=> CO2 ^ + H2 ^}}} В результате данного процесса получается «grey hydrogen», который невозможно применять в топливных элементах, так как примесь CO отравляет катализаторы. Дальше, при его очистке до 10—100 ppm CO, получают «blue hydrogen», но и он отравляет платиновый катализатор.
  • Электролиз водных растворов солей:
  • 2 NaCl + 2 H 2 O ⟶ 2 NaOH + Cl 2 ↑ + H 2 ↑ {\displaystyle {\ce {2NaCl + 2H2O -> 2NaOH + Cl2 ^ + H2 ^}}}
  • «Green hydrogen» (особо чистый водород) получают электрохимическим способом. Электролизом водного раствора гидроксидов активных металлов (преимущественно гидроксида калия)[20] (англ.) при повышенных температуре и давлении на Ni-электродах. Это достаточно энергозатратный метод, который составляет лишь 4 % от общего производства водорода.
  • 2 H 2 O → 4 e − 2 H 2 ↑ + O 2 ↑ {\displaystyle {\ce {2H2O ->[4e^{-}] 2H2 ^ + O2 ^}}} Кроме того, существует промышленная технология электролиза химически чистой воды, без применения каких-либо добавок. Фактически, устройство представляет собой обратимый топливный элемент с твёрдой полимерной мембраной[20] (англ.) или без мембраны.
  • Каталитическое окисление метана кислородом:
  • 2 CH 4 + O 2 ↽ − − ⇀ 2 CO + 4 H 2 {\displaystyle {\ce {2CH4 + O2 <=> 2CO + 4H2}}}
  • Крекинг и риформинг углеводородов в процессе переработки нефти.
В лаборатории
  • Взаимодействие разбавленных кислот с металлами, стоящими в электрохимическом ряду напряжений до водорода. Для проведения такой реакции чаще всего используют цинк и разбавленную серную кислоту:
  • Zn + H 2 SO 4 ⟶ ZnSO 4 + H 2 ↑ {\displaystyle {\ce {Zn + H2SO4 -> ZnSO4 + H2 ^}}}
  • Взаимодействие кальция с водой:
  • Ca + 2 H 2 O ⟶ Ca ( OH ) 2 + H 2 ↑ {\displaystyle {\ce {Ca + 2H2O -> Ca(OH)2 + H2 ^}}}
  • Гидролиз ионных гидридов:
  • NaH + H 2 O ⟶ NaOH + H 2 ↑ {\displaystyle {\ce {NaH + H2O -> NaOH + H2 ^}}} CaH 2 + 2 H 2 O ⟶ Ca ( OH ) 2 + H 2 ↑ {\displaystyle {\ce {CaH2 + 2H2O ->Ca(OH)2 + H2 ^}}}
  • Действие щелочей на цинк или алюминий:
  • 2 Al + 2 NaOH + 6 H 2 O ⟶ 2 Na [ Al ( OH ) 4 ] + 3 H 2 ↑ {\displaystyle {\ce {2Al + 2NaOH + 6H2O -> 2Na[Al(OH)4] + 3H2 ^}}} Zn + 2 KOH + 2 H 2 O ⟶ K 2 [ Zn ( OH ) 4 ] + H 2 ↑ {\displaystyle {\ce {Zn + 2KOH + 2H2O -> K2[Zn(OH)4] + H2 ^}}}
  • Электролиз водных растворов кислот, щелочей или некоторых солей на катоде происходит выделение водорода, например:
  • 2 H 3 O + + 2 e − ⟶ 2 H 2 O + H 2 ↑ {\displaystyle {\ce {2H3O+ + 2e- -> 2H2O + H2 ^}}}
Получение дейтероводорода
Дейтероводород получают из тяжёлой воды, которую в настоящее время производят электролитическим обогащением обычной воды. 0,0156 % водорода находится в виде дейтерия.
Перенапряжение выделения H2 несколько меньше по сравнению с D2 (хотя зависит от природы материала катода и состава раствора), тяжёлая вода накапливается в электролизёре. Применяется каскад электролизёров.
Другие способы получения дейтероводорода: термодиффузия газообразного водорода, диффузия смеси D2/H2 через палладиевый фильтр.
Физические свойства
Водород — самый лёгкий газ: он легче воздуха в 14,5 раз. Поэтому, например, мыльные пузыри, наполненные водородом, на воздухе стремятся вверх[24]. Шары, наполненные водородом, также стремятся вверх. Водород использовался для воздухоплавания, но из-за взрывоопасности от водорода отказались в пользу гелия. Чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа, за счёт чего быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в 7 раз выше теплопроводности воздуха.
Молекула водорода двухатомна — Н2. При нормальных условиях это газ без цвета, запаха и вкуса. Плотность 0,08987 г/л (н. у.), температура кипения −252,76 °C, удельная теплота сгорания 120,9⋅106 Дж/кг, малорастворим в воде — 18,8 мл/л при н.у. Растворимость водорода в воде возрастает с увеличением давления и снижается с увеличением температуры.
Водород хорошо растворим во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объёмов H2 на 1 объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим в серебре.
Жидкий водород существует в очень узком интервале температур от −252,76 до −259,2 °C. Это бесцветная жидкость, очень лёгкая (плотность при −253 °C 0,0708 г/см³) и текучая (вязкость при −253 °C 13,8 сП). Критические параметры водорода: температура −240,2 °C, давление 12,8 атм, критическая плотность 0,0312 г/см³ и критический объём 66,95—68,9 см³/моль (0,033 м³/кг). Указанными значениями критических параметров объясняются трудности при ожижении водорода.
В жидком состоянии равновесный водород состоит из 99,79 % пара-Н2, 0,21 % орто-Н2
Твёрдый водород, температура плавления −259,2 °C, плотность 0,0807 г/см³ (при −262 °C) — снегоподобная масса, кристаллы гексагональной сингонии, пространственная группа P6/mmc, параметры ячейки a = 0,378 нм и c = 0,6167 нм.
Химические свойства
Молекулы водорода достаточно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:
H 2 ⟶ 2 H − 432 кДж {\displaystyle {\ce {H2->2H-432{\text{кДж}}}}}
Поэтому окислительная способность водорода проявляется в реакциях с активными металлами, как правило, при повышенных температуре и давлении. При обычных температурах водород реагирует только с очень активными металлами, например, с кальцием, образуя гидрид кальция:
Ca + H 2 ⟶ CaH 2 {\displaystyle {\ce {Ca + H2 -> CaH2}}}
и с единственным неметаллом — фтором, образуя фтороводород:
H 2 + F 2 ⟶ 2 HF {\displaystyle {\ce {H2 + F2 -> 2HF}}}
С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например, при освещении:
2 H 2 + O 2 ⟶ 2 H 2 O {\displaystyle {\ce {2H2 + O2 -> 2H2O}}}
Записанное уравнение отражает восстановительные свойства водорода.
CuO + H 2 ⟶ Cu + H 2 O {\displaystyle {\ce {CuO + H2 -> Cu + H2O}}}
С галогенами образует галогеноводороды:
H 2 + F 2 ⟶ 2 HF {\displaystyle {\ce {H2 + F2 -> 2HF}}}, реакция протекает со взрывом в темноте и при любой температуре, H 2 + Cl 2 ⟶ 2 HCl {\displaystyle {\ce {H2 + Cl2 -> 2HCl}}}, реакция протекает со взрывом, только на свету.
С сажей взаимодействует при сильном нагревании:
C + 2 H 2 ⟶ CH 4 {\displaystyle {\ce {C + 2H2 -> CH4}}}
Меры предосторожности
Водород при смеси с воздухом образует взрывоопасную смесь — так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21 %. Пределы взрываемости: с воздухом — 4-75 об. %, с кислородом — 4,1-96 об. %[39]. Также водород пожароопасен. Жидкий водород при попадании на кожу может вызвать сильное обморожение.
Применение
Водород сегодня применяется во многих областях.
Химическая промышленность
Химическая промышленность — это крупнейший потребитель водорода. Более 50 % мирового выпуска водорода идёт на производство аммиака. Ещё около 8 % используется для производства метанола. Из аммиака производят пластмассы, удобрения, взрывчатые вещества и прочее. Метанол является основой для производства некоторых пластмасс.
Топливно-энергетический комплекс
В нефтепереработке около 37 % мирового выпуска водорода используется в процессах гидрокрекинга и гидроочистки, способствуя увеличению глубины переработки сырой нефти и повышению качества конечных продуктов.
Водород используют и в качестве ракетного топлива. Ввиду крайне узкого диапазона температур (менее 7 кельвинов), при котором водород остаётся жидкостью, на практике чаще используется смесь жидкой и твёрдой фаз.
В водородно-кислородных топливных элементах используется водород для непосредственного преобразования энергии химической реакции в электрическую.
Транспорт
Водород используется в качестве топлива для серийно выпускаемых автомобилей на Водородных топливных элементах: Toyota Mirai, Hyundai Nexo.
Американская компания представила линейку коммерческих автомобилей на водороде, а также пикап Nikola Badger с запасом хода 960 км.
Компания Alstom в 2018 году запустила в Германии первый коммерческий поезд на топливных элементах Coradia iLint, способный проходить 1000 км на одном резервуаре с водородом. Поезда совершают 100-километровые рейсы со скоростью до 140 километров в час.
Электроэнергетика
В электроэнергетике водород применяется для охлаждения мощных электрических генераторов.
Пищевая и косметическая промышленность
При производстве саломаса (твёрдый жир, производимый из растительных масел) используется около 2 % мирового выпуска водорода. Саломас является основой для производства маргарина, косметических средств, мыла. Водород зарегистрирован в качестве пищевой добавки под номером E949.
Лабораторное
Водород используется в химических лабораториях в качестве газа-носителя в газовой хроматографии. Такие лаборатории есть на многих предприятиях в пищевой, парфюмерной, металлургической и химической промышленности. Несмотря на горючесть водорода, его использование в такой роли считается достаточно безопасным, поскольку водород используется в незначительных количествах. Эффективность водорода как газа-носителя при этом лучше, чем у гелия, при существенно более низкой стоимости.
Метеорология
Водород используется в метеорологии для заполнения оболочек метеозондов. Водород в этом качестве имеет преимущество перед гелием, так как он дешевле. Ещё более существенно, что водород вырабатывается прямо на метеостанции с помощью простого химического генератора или с помощью электролиза воды. Гелий же должен доставляться на метеостанцию в баллонах, что может быть затруднительно для удалённых мест.
Авиационная промышленность
В настоящее время водород в авиации не используется. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколько катастроф, в ходе которых дирижабли взрывались и сгорали. В наше время дирижабли наполняют гелием, несмотря на его существенно более высокую стоимость.
Прочее
Атомарный водород используется для атомно-водородной сварки. Высокая теплопроводность водорода используется для заполнения сфер гирокомпасов и стеклянных колб филаментных LED-лампочек.

*Источник https://ru.wikipedia.org/wiki/%D0%92%D0%BE%D0%B4%D0%BE%D1%80%D0%BE%D0%B4


Записаться
на консультацию
Оставьте заявку и мы свяжемся с Вами и проконсультируем по любым вопросам

Мы обрабатываем cookies, чтобы сделать наш сайт удобнее и персонализированее для вас. Подробнее: политика использования «cookies» и «политики конфиденциальности».

Для самостоятельной настройки ознакомтесь с инструкцией

Дополнительные настройки cookies в браузерах

Файлы cookie автоматически загружаются в ваш браузер при посещении веб-сайта. У вас есть возможность управлять этими файлами. Если Вы не согласны с использованием файлов cookies, запретите их сохранение на своём устройстве, удалите уже имеющиеся файлы cookies через настройки браузера или прекратите использование сайта.

При отключении обработки cookie наш сайт продолжит функционировать, однако будут использоваться исключительно необходимые технические файлы, без которых работа ресурса невозможна.

Инструкция по отключению cookies
Принять
Настроить
Отклонить